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A dynamical approach to recurrent and extreme events is developed focusing on the role of correlations and
memory in the structure of the probability distributions and their low-order moments. The procedure is illus-
trated on homogeneous first and second order Markov chains, non-Markovian and nonhomogeneous processes
and deterministic dynamical systems. Substantial differences with classical statistical theory as applied to
independent identically distributed random variables are identified.
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I. INTRODUCTION

Recurrent and extreme events are of great importance in a
variety of fields. They signal the re-emergence of a particular
configuration attained by a system at a certain time in the
past or the occurrence of potentially catastrophic excursions
of a relevant variable from its long term average and are, on
these grounds, key elements to be accounted for when deal-
ing with the issue of prediction of natural, technological or
social systems [1,2].

There is a widespread feeling that owing to their scarcity,
recurrent, and extreme events associated with a certain vari-
able X monitored at regular times t,=nAft are essentially in-
dependent, entailing that the set of the successive values X,
constitutes a set of independent identically distributed ran-
dom variables (i.i.d.r.v.’s). There exists a powerful statistical
theory devoted to this case which has met with an immense
success, from hydrology to civil engineering to insurance
and finance [3].

Recently, the present authors and co-workers have shown
that recurrent and extreme events in deterministic dynamical
systems [4] or in bimodal systems [5] display properties not
accounted fully by the classical statistical theory. The objec-
tive of the present paper is to elaborate further on this theme
by analyzing the role of memory in the probabilistic proper-
ties of recurrences and of extreme event related phenomena,
such as successive exceedences. In addition to being one of
the main signatures of the entire class of deterministic pro-
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cesses memory is also present in a variety of stochastic pro-
cesses as well, a familiar example of which is provided by
moving averages.

The types of situation we shall be concerned with are
depicted in Figs. 1 and 2. The empty circles denote the avail-
able states, whereas the numbers next to them indicate the
times of visit. We divide the full set of M states into two

subsets containing K (subset C) and M —K (subset C) states,

respectively, and convene that subsets C and C constitute
two “cells” associated, in particular, with “subthreshold”

(cell C) and “superthreshold” (cell C) values of a represen-
tative variable. In this setting the paths in Figs. 1(a) and 1(b)
correspond to recurrence in cell C and C, respectively,
whereas the path in Fig. 2 corresponds to an event of double

exceedence of the threshold separating C and C. To allow for
the possibility of switching to a continuous time description
(At—0) Smoluchowski’s definition of recurrence and ex-
ceedence will be adopted [6]. Accordingly, the events in
Figs. 1(a) and 2 will be conditioned by the probability of
being in cell C at time 0 and in C at time 1 and likewise for
Fig. 1(b).

We start in Sec. II with a brief survey of results based on
the assumption of i.i.d.r.v.’s. In Sec. IIl we derive expres-
sions for path probabilities and their moments in the case of
homogeneous first- and second-order Markov processes, ex-
tending those of the classical theory. Non-Markovian and
nonhomogeneous processes are considered in Sec. IV at dif-
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FIG. 1. Schematic representation of the phenomenon of recurrence within cells C and C. The empty circles denote the instantaneous
position of the trajectory whereas the numbers next to them the times spent outside the reference cell, starting initially from cell C (a) and

C (b), respectively.
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FIG. 2. Schematic representation of the phenomenon of double
exceedence of a threshold starting initially at cell C.

ferent levels: first, the process induced when lumping the
states of a Markov process; and second, processes in which
the conditional probabilities of successive steps depend on
the system’s entire previous history. The connection with de-
terministic systems is discussed in Sec. V and the main con-
clusions are summarized in Sec. VI.

II. INDEPENDENT IDENTICALLY DISTRIBUTED
RANDOM VARIABLES

As a reference and as a comparison point with the results
derived subsequently for correlated processes we summarize
in this section the probabilistic properties of the events de-
picted in Figs. 1 and 2 in the limit of i.i.d.r.v.’s. The main
signature of statistical independence in this evaluation will
be that the conditional probabilities for the successive steps
will be equal to the absolute probabilities of the final states,

w(C|C)=Pg, w(C|C)=P. (1)
In typical situations of interest the monitored variable X is a

stochastic variable with continuous realizations. Let p(x) be
its probability density and

Fc=fdxp(x), Fe=1-F, (2)
c

the associated cumulative distributions to be in cells C and
C, respectively. One has, then, Po=F¢, Pe=1-F and the
path and conditional probabilities (in the Smolukowski per-
spective, see Introduction) of the recurrent and exceedence
events of Figs. 1 and 2 are as follows:

(i) Recurrence in C,

P(n) =Prob(Xy € C,X; € C, - X, € C,X,,, € O)
=Fc(1-FQ)"Fc,

Pi(n)

Wet= Fe(1-F¢)

=(1-Fo)"'Fe. 3)

(ii) Recurrence in C,

rec

PZ (m)=Prob(X, € C.X; € C,***X,, € C.X,,; € C)

=(1=FoFe(1-Fo),
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]/Vrf'c(m) — ﬂ:]ﬂn—l(l —Fp) (4)
¢ Fo(1-Fo) € o

(iii) Double exceedence of threshold from C to C,
P™(n,m) =Prob(X, € C.X; € C,"+- X, € C. X,

€ C» ' “Xn+m+l € C9Xn+m+2 € 6)
=Fc(1-F)"Fe(1-F¢),

Pexc(n’m)

T h - o

= (1= FQ)"Fi= WE(n)Wz (m).
(5)

All distributions (3)—(5) are, clearly, normalized when
summed over n, over m and over both n and m, respectively.
The corresponding means and variances can be evaluated
straightforwardly, yielding

1
Trec = = N
C (n) Fe
rec 1
TC - <m> - 1 _ FC ’
rec rec 1

=(m+m)y=7-"+1- =—+——,
( )=Te T Feo 1-F¢

1-F
= ((6n)?) = o ¢
rec _ 2 _L
VE = (om)) = Tr 6)
3F2-3F +1
Ve = ((8(n + m))?) = FE(]TCC) = ((n)2) + ((5m)?).
(7)

Notice the additivity property in the last Egs. (6) and (7), a
direct consequence of the factorization property in Eq. (5).

III. HOMOGENEOUS MARKOYV PROCESSES

As a first step toward assessing the role of correlations in
recurrence and exceedence phenomena we consider in this
section the case where the transitions between C and C con-
stitute first and second order Markov processes, successively.
The simplest implementation of this setting is provided by a
discrete chain involving two states. A more intricate situation
is that of a multistate chain in which the states are lumped

into two groups, C and C.

A. First-order Markov chain

We limit ourselves to irreducible chains consisting of er-
godic states. The process is fully defined by the knowledge
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of the invariant probabilities P, P: and of the one-step con-
ditional probabilities, assumed to depend only on the time
step associated with the transition (homogeneity property in
time)

W(E|C) =Wces

w(C|C) = wce (8a)

with
w(C|C) = wC|C) =wge=1-wee.
(8b)

wee=1-wee,

The conditional probabilities (again, in the Smolukowski
sense) for the events in Figs. 1 and 2 extending those in Egs.
(3) and (5) are now given by

n—1

Wes(n) =weawee=(1=weg)"™ "Wee, )
Wrec(m) wicwee= (1=wee)™ wee, (10)

W(n,m) = (1 =wee)"'wec(l = wae)™'wee
= WEm Wz (m). (11)

Notice that the factorization property in Eq. (5) extends to
the present case as well, even though (one-step) correlations
are accounted for. The corresponding means and variances
are on the other hand given by

rec
=(n) = wee

1
rec
e L
¢ =tm wee

XC=<n+m)=L_+L_,
Wee  Wcee
1 -—wee
Ve =((n))y=—5—,
Wee
1= =
VE = ((om)?) = e (12)
Wee
=((8(n +m))*) =((8n)*) +((dm)*). (13)

While the additivity property noticed in Sec. II still holds
[last equations in Egs. (12) and (13)] the expressions for the
recurrence times now bear the signature of correlations, as
they are not reducible to the absolute probabilities of being

in cells C or C or, alternatively, to the measures of these
cells.

Since the relevant variable in the perspective of double
exceedences is the sum n+m, it is of interest to deduce from
Eq. (11) the reduced probability distribution

PHYSICAL REVIEW E 80, 061119 (2009)

P(u)
0.04 |

0.02 L

ol
0 10 20 30 40 u

FIG. 3. Dependence of the probability P of the time u between
two successive exceedences in the case of a two-state homogeneous
Markov process as a function of u as obtained numerically after
averaging over 10° realizations. Parameter values are w=0.5 and
wee=0.95.

©

> WeE(n,m) 8

Pexc(u) = n+m,u* (14)

n.m=1
Performing the Kronecker delta and using expression (11)
we obtain

u-1

P(u) = E ch Wlé_cn_ WeeWee

or finally

WecWee  u-1

(Wee —=wee)s (15)
which is properly normalized. Interestingly, this distribution
possesses a maximum at a u value given by

-1 -
wee wee Inwee
Upax = lnw— n———
cc

- (16)
Wee In Wee

Figure 3 depicts the result of evaluation of P(u) by a direct

stochastic simulation of the process, in full agreement with
the above analytical expressions.

B. Second-order Markov chain

Extending the memory by one additional step entails that
for a full description of the evolution one needs, besides the
invariant probabilities P, and P, the set of eight conditional
probabilities,

(A,B=C,0) (17a)

with

- 1. (17b)

As in the previous subsection, time-homogeneous processes
are again assumed.

An explicit model satisfying these properties, proposed by
Raftery [7] consists in expressing w as a weighted sum of
transitions to the present state from either of the two states 1
and 2 time units behind,
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w(C

A,B) =Nqca+ (1 =N)qcp,

w(C

A,B) =Nqca+ (1= N)qcs, (18)

where 0=A=1 and g, etc. are the elements of a stochastic
matrix.

To express the conditional probabilities for the events in
Figs. 1 and 2 one needs now to distinguish between the case
where both n and m are larger than equal to 2 and the case
where at least one of them is equal to 1.

Recurrence in cell C

We(n=1)=w(C|C,C) =\gce+ (1 =Ngcee,  (19a)
WS (n = 2) = w(C|C,C)w"(C|C,C)w(C|C,C)
n-2
= (\gec+ (1 -Ngcoazeqee.  (19b)
and likewise for cell C.
Double exceedence
W*(n=m=1) =w(C|C,C)w(C|C,C)
=[Agcc+ (1 =Ngecllhgee + (1= Ngeels
(20a)
W*n=2m=1)
=w(C|C,C)w"2(C|C,C)w(C|C,C)w(C|C,C)
n-2
=[Agec+ (1 =Ngeellhgee + (1= Mageclazz qces
(20b)
Wn=1,m=2)
=w(C|C,C)w(C|C,C)w™(C|C,C)w(C]|C,C)
=[N\gcc+ (1= NgeclNgee+ (1= Naeclddc ace
(20¢)
W*(n=2,m=2)
=w(C|C,C)w"3(C|C,C)w(C|C,C)
Xw(C|C,C)w™*(C|C,C)w(C|C,C)
=[Ngce+ (1 =Ngecllhgee+ (1 =Ngcel
n—-2 m=2 __
Xqieqcedee aec- (20d)

On inspecting Egs. (19) and (20) one sees that the factor-
ization of W into W and Wrgc (and hence the additivity of

the corresponding averages) holds once again, since the ex-
tension of memory affects both types of distribution in simi-
lar ways. There is, however, a signature of the extended
memory in the expression of the mean recurrence and ex-
ceedence times. As an example the mean recurrence time in
cell C reads

PHYSICAL REVIEW E 80, 061119 (2009)

7_rcec _ W(C|C, 0) +_WEC|C, 0) (21)
w(C|C,C)

reducing, as expected, to the first expression (12) in the limit
of one-step Markov process for which the state two time
units behind plays no more a role.

IV. NON-MARKOVIAN, NONHOMOGENEOUS
PROCESSES

We consider, successively, a case of non-Markovian pro-
cess generated by lumping of the states of a finite Markov

chain into two subsets C and C, a genuine non-Markovian
process in which the transition between states C and C de-
pends explicitly on past history and a process satisfying the

Chapman-Kolmogorov equation where the property of time
homogeneity breaks down.

A. Lumping states in a finite Markov chain

Consider once again the general setting of Figs. 1 and 2.
Suppose that the transition between states is governed by a
finite Markov chain and let s; and f; be two states such that
s;eCand f; e C. By definition, the conditional probability

for performing in a single step a transition from s; to C is

W(5IS,~) = E W(fj|si) (22)
jeC_'
and likewise for a transition from f; to C. The converse of
this process, namely, a transition from C to s; (and likewise
from C to fj) obeys, on the other hand, to more involved
rules unless all individual conditional probabilities satisfy the
lumpability property,

w(s,-|fj)=w(s,-|é) (independent of j),

w(fils;) =w(f}|C) (independent of i). (23)

In this case lumping preserves the Markov property of the
original chain [8] and the analysis of Sec. III A applies
straightforwardly.

We now want to determine the consequences (if any) of a
non-Markovian partitioning of the original states into two
coarse-grained states C and C, in the probabilistic properties
of the recurrence and exceedence events considered in the
present work. Let P, P be the probabilities of being in C

and C. By definition

PC=EP1'5
ieC

Pe=2 P, (24)
jeC

where {P;}, {P;} are the probabilities of the states of the
original process. We next introduce the quantities

2 ﬁini’

ieC, jeC

Wee= (25a)
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with

(25b)

i > j .
Ei'eCPi’ Ej'eép;

If the lumpability conditions [Egs. (23)] were satisfied, the
quantities in Eq. (25a) would stand for the transition prob-

abilities between states C and C of a bona fide two-state
Markov chain. The question we ask is, whether in absence of
lumpability they still determine the recurrence and ex-
ceedence properties. Surprisingly, the answer to this question
is in the affirmative at least as far mean values [Egs. (12)] are
concerned. The reason for this is in fact that when dealing
with recurrence or exceedence events in a stationary stochas-
tic process one essentially probes (after transients have
elapsed) properties depending on the invariant probability
and the one-step transition probabilities. These quantities sat-
isfy the relations

Pi= 2

jecuc

ieCUC, (26)
which entail in turn the following property involving the
quantities defined in Egs. (24) and (25):
Pe_Zec @)
Pe Wee
This is nothing but the expression satisfied by the invariant
probabilities of a two-state Markov chain with transition
probabilities given by w¢e and wee, and the statement is
thereby proved. Alternatively, we here deal with a property
of weak lumpability [8] valid as long as the starting prob-
ability vector is the invariant measure of the chain. This con-
clusion is fully corroborated by the results of a direct simu-
lation of the stochastic process.
It should be pointed out that results as above break down

when time-dependent properties are concerned. In this case,
projecting the evolution equation

P(n+1)=W-P(n)
with

P=(P- Py, W={wy} (28)

into the coarse-grained states [Eq. (24)] will no longer yield
a closed equation involving solely P(n) and Pz(n) for all
times but, rather, an inhomogeneous equation involving a
“complement” not belonging to the coarse-grained subspace.

PHYSICAL REVIEW E 80, 061119 (2009)

As an example consider a three-state Markov chain and let
C=(1,2) and C=(3). We define the matrices

(110)
U= ,V:
00 1

Applying U on both sides of Eq. (28) and using the property
that UV is the unit matrix and VU a block-diagonal matrix
involving exclusively stochastic submatrices one obtains an
evolution equation of the form

(Pc(n+ 1)) B W(Pc(n)> . ( q(n) )
Pen+1)) "\ Pa(n) —-qn) )’

where W=UWYV and g(n)=—>5—(P,;=P,). This equation
displays clearly the correction to be brought to the coarse-

0

0 (29)

N[ = =

0 1

(30)

grained evolution governed by the matrix W when the lump-
ability condition ws,=ws5; [cf. Eq. (23)] is not satisfied. In
the steady state Po(n+1)=Pq(n) and likewise for P, and
one recovers relations (24), (25a), (25b), (26), and (27).

B. Two-state non-Markovian process: The Polya
model

Non-Markovian processes arise in a variety of problems
from physics to finance, often in connection with generalized
random walk type processes [9,10]. In this subsection we
will be interested in the Polya model, a minimal two-state
system in which extensive analytic results complemented
with stochastic simulations can be obtained.

The model is defined as follows [11]. A box contains ini-
tially b black and r red balls. In the first time step a ball is
drawn at random, is replaced and, moreover, ¢ balls of the
color drawn are added. A new random drawing from the box
(which now contains b+r+c balls) is made in the second
time step and the procedure is repeated for as long as desired.
We are interested in the recurrence and exceedence proper-
ties of the variable X,, taking two distinct values according to
whether the nth drawing results in a black (state C=>) or a

red (state C=r) ball. Clearly, we are here dealing with a
process where, contrary to those considered so far in this
work, the transition probabilities are updated such that the
drawing of either state increases its probability at the next
drawing. This provides a rough model for such phenomena
as the propagation of a contagion.

We are now in the position to write out the analytic ex-
pressions for the probabilities of the events depicted in Figs.
1 and 2.

(1) Recurrence in C=b,

__ path probability of event of having 2 black and n red drawings

WreC —

probability of 1 black and 1 red drawing

or
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(et r(%5 42
ec_(b+c)H;’:_ll(r+jc)_ c+ c+n c *

(ii) Recurrence in C=r,

WICC

r

or
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b = n+1 - (31)
I1 b+
(bt r+ke) F(£+1)I‘< r+2+n)
c c
_ path probability of event of having m black and 2 red drawings
B probability of 1 red and 1 black drawing
b+ b
(r+ O (b + jo) (r”)r< r+2>r(‘+’">
r+ o)’z c c ¢ c
ec __ j=1 J _ (32)

c

T (b+r+ke) (b b+
i (b r+ke) F<—+1>F( r+2+m)
c
(iii) Second passage probability from b to r (the analog of double exceedence),

_ path probability of event of having m+1 black and n+1 red drawings

W(n,m) =

probability of 1 black and 1 red drawing

or
I, (r + jo)ILL, (b + kc)
5+ b+ r + €c)

b+r b r
r +2|II'—+1+m|l'\—+1+n
C C C
r b b+r
I'f-+1|I'{—+1]|T +2+n+m
[ C C

(33)

All three distributions (31)—(33) are normalized to unity
when summed over n, m and both n and m, respectively.
They fall off as inverse powers of their arguments in the limit
of large n and m, differing in this respect from the exponen-
tial form of their counterparts considered in Secs. II and III.
We also notice that the factorization property of W into
W, ¢ and W, is no longer satisfied—a direct consequence of
the updating of the successive transition probabilities and
hence of the non-Markovian character of the process. Nev-
ertheless, on computing the mean values one obtains the ana-
Iytic result

We¢(n,m) =

b+r+c

ec _
7fb =

_(b+r)(b+r+c)
B br

7ﬁXC - 7_1;2C + T]r"eC. (34)

This relative insensitivity of the mean to the non-Markovian
character of the process reflects probably the fact that aver-

aging only probes the global properties of the underlying
probability distribution. On the other hand the computation
of the covariance of m and n leads to a nonvanishing expres-
sion, reflecting the presence of correlations

(b+r+c)

oméon) =—
(6 dn) br

(35)
For ¢=0 this expression vanishes as expected, since in this
limit the Polya process reduces to a Bernoulli process.

In a similar vein the variances of recurrence and ex-
ceedence times can be evaluated analytically, yielding

e (b+c)r+c)b+r+c)
ve'= (b—c)b? ’
ec Bb+c)r+c)b+r+c)
Vr& B (r=c)r? ’
Y UMl (36)

c br
Additivity of the variances thus fails, contrary to the i.i.d.r.v.
and Markov cases. The decrease of V**¢ compared to the sum

of variances of recurrences in C and C reflects the fact that
computing moments associated with the quantity n+m re-
quires a contracted form of the full distribution W*¢(n,m),
similar to the distribution P(u) introduced in Eq. (14). This is
further confirmed by the computation of the entropy of the
distribution P(u), which turns out to be less than the sum of
entropies of W&° and Wrgc. Figure 4 depicts the dependence

of V¥*¢ on r as obtained from a direct stochastic simulation of
the process, in full agreement with the analytical result in Eq.
(36).
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FIG. 4. Dependence of V**¢ on r as obtained from a direct nu-
merical simulation of the Polya process after averaging over 10°

realizations (full line). Empty circles stand for the analytic result
[Eq. (36)].

The nonindependence of successive exceedences in the
Polya model has also been established using the method of
Contingency Tables combined with a x* test [12]. Let N be
the total number of events recorded, K, ,, the number of oc-
currences of the particular combination (n,m) and v,, v,, the

observed frequencies of recurrent events in C and C. We
compare the quantity

N N )
dzzgzw (37)

n=1 m=1 NVan

with the value X%_a(Nz— 1), where 1—a is a prescribed level
of acceptance of the “null hypothesis” of the events being
independent, and x;_, is determined from the chi-square dis-
tribution. The null hypothesis will be accepted if and only if
d*<xi_(N*~1). Choosing a=0.95, r=bh=5 one finds that
the null hypothesis is to be unambiguously and definitely
rejected for ¢=1 and retained (as expected) in the limit ¢
=0 in which the Polya process reduces to a Bernoulli pro-
cess.

C. Nonhomogeneous processes

We close this section with the analysis of double ex-
ceedences for processes in which the conditional probabili-
ties depend not only on the time interval between initial and
final states but also on time at which the initial state has
occurred. This is the case, for instance, of systems subjected
to time-dependent control parameters in the form of ramps
(as it happens when switching a device), external fields, etc.
It will be assumed that the process still satisfies the
Chapman-Kolmogorov equation [11]. and reduces to two
states each of which is associated to the subthreshold (state
1) and superthreshold (state 2) value of the relevant variable.

The specific model we adopt assigns the following form
to the four conditional probabilities involved,

wy=w(l,n+l1|l,n)=¢a, wy=1-a, (38a)

2.n)=8, wp=1-p.  (38b)

The path probabilities replacing expressions (31)—(33) be-
come (cf. Figs. 1 and 2),

wy=w(2,n+1

PHYSICAL REVIEW E 80, 061119 (2009)

W) =g (1-pB), (39a)

Wysm) = a; -+ a, (1 - a,), (39b)

We(n,m) = B (1 = By -+

an+m(1 - an+m+1)’

(39¢)

and are all properly normalized provided that 8 and «,, for
any n remain strictly smaller than unity. Clearly, expression
(39c¢) is not reducible to a product of Egs. (39a) and (39b) as
it carries the memory of the order in which exceedences took
place. Multiplying Eqgs. (39) by n,m and (n+m) successively
and summing over all n and m from 1 to © we obtain

1
= s (40a)
=1+ 1] e, (40b)
n=1 j=1
1 o0 ©  n+m+l
7 = + 211+ Il «B'(1-p).
1 _B n=1 m=1 j=n+1
(40c¢)

On inspecting Egs. (40a)—(40c) one is led to anticipate
[keeping also in mind the nonfactorizability of W*(n,m)]
that nonadditivity, 7*# 77+ 75 should hold for a typical
form of «,,. This is confirmed by explicit calculations using
the model

_qi1tqomn

= 0<gq,, <1. 41
n l+n q1> 42 (41)

Equation (40b) yields then
— g, 42 —
71260 - (lqz)—l , (42)
q1

whereas Eq. (40c) gives rise to a weighted sum of hypergeo-
metric functions whose numerical evaluation for specific val-
ues of ¢y, ¢, and B yields the expected result of nonadditiv-
ity. These results are entirely confirmed by a stochastic
simulation of the process as summarized in Fig. 5. Notice
that when g;=¢, the process becomes time homogeneous
and one recovers the results of Sec. III A.

V. DETERMINISTIC DYNAMICAL SYSTEMS

The principal signature of deterministic dynamics is that
the state at any given time is determined uniquely by the
knowledge of the state at some other time, chosen as the
“initial” time. Deterministic dynamical systems are thus in-
finite memory systems, sharing in this respect some of the
features of systems undergoing non-Markovian processes.
Still, while in the latter the required knowledge of the past
pertains to a whole set of states, in the former a single
state—however remote from (or close to) the present
state—is sufficient. Furthermore, contrary to stochastic dy-
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FIG. 5. Mean time between two successive exceedences versus
parameter g, in the case of a two-state nonhomogeneous Markov
process [Egs. (38), (39), and (41)]. Full line depicts the result ob-
tained by direct stochastic simulation of the process after averaging
over 10° realizations. Empty circles stand for the analytical expres-
sion and dashed line is the sum of the mean recurrence times of the
corresponding states. Parameter values are 8=0.5 and ¢;=0.2.

namics in which the transition probabilities are smooth, in
deterministic dynamics the transition between two states as-
sociated to two distinct points in phase space has the singular
form of a delta function defined along the trajectory joining
these states.

In the present section we summarize some results on re-
currence and repeated exceedence processes for the class of
deterministic systems defined by iterative maps in the inter-
val,

Xpr1 =f(xpp), a=x=b, a=flx)=b, (43)

where w is a control parameter. We consider, successively,
mappings giving rise to fully developed chaos and to weak
chaos in the form of intermittent behavior. In each case we
divide the interval [a,b] into two cells C, C such that

CUC=[a,b], playing the role of “subthreshold” and “super-
threshold” values of x (see Introduction), and monitor the

transitions between C and C corresponding to the events de-
fined in Figs. 1 and 2.
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A. Fully developed chaos

We consider the logistic map f(x)=1-2x% —-1=x=1.
The partition C=[-1,x,], C=(x,,1) is a Markov partition [4]
for x;=0 and x,;=0.5 (the fixed point of the mapping) and a
non-Markov one for x;=0.25. As expected, the probability
W<(n,m) splits into two independent recurrent events in C

and C in the first two cases. Still, it is worth mentioning the
presence of strong selection rules induced by the determin-
istic character of the dynamics entailing that for x;=0.5 the

only possible values of sojourn times in C are n=1. On the
other hand for the non-Markovian partition at x;=0.25 sta-
tistical independence fails, as one can check explicitly by
applying the method of Contingency Tables described in the
previous section.

Figure 6 depicts the dependence of the probability of the
time u between two successive exceedences as a function of
u, for x;=0 and x;=0.25. In both cases P(u) falls off expo-
nentially, the difference being a faster decay for x;=0.25
owing presumably to a more restricted range of allowed val-
ues of the exceedence times.

B. Intermittent chaos

We consider the cusp map f(x)=1-2|x|"?, -1 =x=1 and
a partition such that the leftmost cell C contains the margin-
ally stable fixed point at x=—1 [4], chosen hereafter to cor-
respond to the choice of the boundary x;=0. Owing to the
weakly chaotic character of the dynamics the probability
W¢(n,m) does not split into two independent recurrent

events in C and C, as checked again explicitly by applying
the method of Contingency Tables. The behavior of the prob-
ability P(u) of the time between two successive exceedences
is depicted in Fig. 7. P(u) falls off now as =2, in accord with
previous results on repeated recurrences by Balakrishnan and
the present authors [13]. Here again, the presence of strong
selection rules imposed by the deterministic character of the
dynamics should be stressed. In particular, the range of al-

lowed sojourn times in cell C is much narrower than in cell
C.
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FIG. 6. Dependence of the probability P of the time u between two successive exceedences of the logistic map as a function of u with
x;=0 (a) and x,=0.25 (b) as obtained numerically after averaging over 10° realizations. Dashed line represents a best fit with an exponential

function.
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FIG. 7. As in Fig. 6(a) but for the cusp map.
VI. CONCLUSIONS

Recurrent and extreme events are of considerable impor-
tance when dealing with the issue of prediction of complex
systems. Ordinarily, they are studied by purely statistical
tools whereby the set of their successive values is supposed
to constitute independent identically distributed random vari-
ables (i.i.d.r.v.’s). In this work we have adopted a dynamical
approach and analyzed the role of memory in the probabilis-
tic properties of recurrences and of successive exceedences
past a threshold. Three types of prototypical systems have
been considered: homogeneous first and second order Mar-
kov chains, in which memory is limited to a single step or to
two steps backward; non-Markovian and nonhomogeneous
processes, in which memory extends over the entire past his-
tory; and deterministic dynamics, where the knowledge of
the initial condition determines uniquely the future states.
Our main conclusion has been that there are substantial dif-
ferences with the i.i.d.r.v. based scenarios. In the Markovian
case i.i.d.r.v. like properties such as factorization of the prob-
ability of two successive exceedences into recurrence prob-

PHYSICAL REVIEW E 80, 061119 (2009)

abilities and the additivity of the corresponding means and
variances still hold but, in contrast with the i.i.d.r.v. case, the
values of the moments are no longer determined entirely by
the invariant measure of the process. In the non-Markovian
case factorization fails along the additivity of the variances,
but the mean values still satisfy the additivity property. In the
nonhomogeneous case nonfactorizability is already mani-
fested through the nonadditivity of the mean values. Finally,
in the case of deterministic dynamics one witnesses the pres-
ence of strong selection rules limiting the ranges of values of
recurrence and successive exceedence times. Factorization
and additivity properties may still hold when transitions are
between the cells of a Markov partitioning. These conclu-
sions call for a reassessment of the time-honored view, in
which analysis and prediction of recurrence and exceedence
events rests upon a purely statistical i.i.d.r.v. perspective.

Throughout this work we argued in terms of discrete time
processes. Although legitimate at first sight in view of the
time-discrete nature of the type of events considered, this
approach is nevertheless subjected to a number of limita-
tions. The basic evolution laws governing the observables of
a physical system (Newton’s or Navier-Stokes equations,
etc.) and their probability distributions (Liouville, master or
Fokker-Planck equations) are continuous in both time and
state space. They do reduce under certain conditions to
coarse-grained, space and time-discrete forms upon projec-
tion on a submanifold or sheer discretization of time and/or
space derivatives [14], but such a reduction usually implies
loss of information of some sort. It would be interesting to
extend our analysis to this more general setting.
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